[ 583 ]

- XXVIIL. Dynamical Problems regarding Elastic Spheroidal Shells and Spheroids of
Incompressible Liquid. By Professor W. TaomsoN, LL.D., F.R.S.

Received August 22,—Read November 27, 1862.

1. TraE theory of elastic solids in equilibrium presents the following general problem :~—

A solid of any shape being given, and displacements being arbitrarily produced or
forces arbitrarily applied over its whole bounding surface, it is required to find the dis-
placement of every point of its substance. The chief object of the present communica-
tion is to show the solution of this problem for the case of a shell consisting of isotropic
elastic material, and bounded by two concentric spherical surfaces, with the natural
restriction that the whole alteration of figure is very small.

2. Let the centre of the sphencal surfaces be taken as origin, and let z, 9, z be the
rectangular coordinates of any particle of the solid, in its undisturbed position, and 2z,
y-+8, z-+y the coordinates of the same particle when the whole is in equilibrium under
the given superficial disturbing action. Then, by the known equations of equilibrium
of elastic solids, we have

(dx9+ dyﬁﬁ) T <dm+ &yt )

(Tt 2o+ 58) 4m (T E+E) =0

(dw2+ +sz> +m'E <3§+@+3§) =0,

m—3n and n denoting the two coefficients of elasticity, which may be called respectively
the elasticity of volume, and the rigidity. A demonstration of these equations, with defi-
nitions of the coefficients, will be found in § 71 of an Appendix to the present commu-
nication.

3. For brevity let

g
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a8
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so that 8 shall denote the cubic dilatation at the point (2, y, z) of the solid. Also, for

2 2
brevity, let the operation di;{—%é +;Z—2 be denoted by v°. Then the preceding equa-
tions become

'nv’ao—l—mg%:O,
)
nv”ﬁ+m@=0,». e e e e e e e e e (3)
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4. In certain cases, especially the ideal one of an incompressible elastic solid, the
following notation is more convenient :—

p the mean normal pressure per unit of area on all sides of any small portion of the
solid, round the point @, y, 2. Then (below, § 21)

p=——gn) (Gt +d)s - @)

and the equations of equilibrium become

2, M dp
VAVAS —Tn de— =0,
2 m dp_ ><'
nvﬁm_gndyo.........(f))
m__dp__
vy — m—3indz

5. If the solid were incompressible, we should have m=—co and

k=

which must be taken instead of (4), and, along with (5), would constitute the four diffe-
rential equations required for the four unknown functions , 3, 7, p*

6. To solve the general equations (3) or (5), take - dw of the first, d of the second,

d of the third; and add. We have thus
(n4m)ve=0, . . . . . . . . . . . (6)

or, which is in general sufficient,
vi=0. . . . . . .. .0 . (D

If, now, an appropriate solution of this equation for 8 is found, the three equations (3)
may be solved by known methods, the first of them for o, the second for 3, and the third
for y,—the arbitrary part of the solution in each case being merely a solution of the
equation V*»=0. These arbitrary parts must be determined so as to fulfil equation (2)
and the prescribed surface conditions.

The complete particular determination of § cannot, however, in most cases be effected
without regard to «, 3, v; and the order of procedure which has been indicated is only
convenient for determining the proper forms for general solutions of the equations.

7. First, then, to solve the equation in & generally, we may use a theorem belonging
to the foundation of LAPLACE’s remarkable analysis of the attraction of spheroids, which
may be enunciated as follows.

If the equation V=0 is satisfied for every point between two concentric spheres of

# See Professor Stoxes’s paper ¢ On the Friction of Fluids in Motion, and the Equilibrium and Motion of
Elastic Solids,” Cambridge Philosophical Society’s Transactions, April, 1845,
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radii @ (greater) and &' (less), the value of & for any point of this space, at distance 7 from
the centre, may be expressed by the double series

Ve, 4V, 4V, <4 &ec.
+ Vi '+ Vir 2+ Va4 &e.,

of which the first part converges at least as rapidly as the geometrical progression

2
r [r \?2
a, b a 9 s

‘and the second at least as rapidly as

d (d\* (a\®
Al — bl , e ,
r’\r/) 7 \r

—if V,, V; denote homogeneous functions of &, 7, z of the order ¢, each satisfying, con-
tinuously, for all values of , , 2, the equation

V2V =0.

A proof of this proposition is given in TromsoN and Tarr’s ‘Natural Philosophy,” chap. i.
Appendix B. Itis also there shown, what I believe has been hitherto overlooked, that
V., Vi, as above defined, cannot but be rational and integral, if ¢ is any positive integer.

8. To avoid circumlocution, we shall call any homogeneous function of (z, 7, z) which
satisfies the equation V'V=0

a “spherical harmonic function,” or, more shortly, a “spherical harmonic.” Thus V,
and V;, as defined in § 7, are spherical harmonics of degree or order ¢; and Vy~*-,
being also a solution of V2V=0, is a spherical harmonic of degree —(¢i-+1). We shall
sometimes call the latter a spherical harmonic of inverse order ¢. Thus w; being any
spherical harmonic of integral degree 4, and therefore necessarily a rational integral
function of this degree, w~%"'is a spherical harmonic of degree —(¢-1), or of inverse
order <.
If we put—(i+1)=y, and denote this last function by ¢,, then we have

oV =y

and thus it appears that the relation between a spherical harmonic of positive degree ¢
and of negative degree j is reciprocal. The general (well known) proposition on which
this depends is that if V; is any homogeneous function of («, #, z) of degree ¢, positive
or negative, integral or fractional, V~*~'is also a solution of the equation V*V=0
(see THoMsoN and Tarr’s ¢ Natural Philosophy,” chap. i. Appendix B.).

A spherical harmonic of integral whether positive or negative degree, satisfying the
differential equation continuously for all values of the variables, will be called an “ entire
spherical harmonic,” because such functions are suited for the solution of acoustical and
other physical problems regarding entire spheres or entire spherical shells.

A spherical harmonic function of (z, 7, z) will be called a “spherical surface-har-
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monic” when the point (2, 7, 2) lies anywhere on a spherical surface having its centre
at the origin of coordinates. A spherical surface-harmonic is therefore a function of
two variables, angular coordinates of a point on a spherical surface. If Y; denote such
a function of order ¢, positive and integral, then Y# and Yo'~ are what we now call
simply spherical harmonics; but sometimes we shall call them, by way of distinction,
“gpherical solid harmonics.” Functions Y;, or spherical surface-harmonics of intregral
orders, have been generally called « LaprAcE’S coeflicients ” by English writers.
9. From the theorem enunciated in § 7, we see that the general solution of our
problem, so far as d is concerned, is this:—
O=3Zr(Vi+Ve21), . . . . . . .. . (8
10. Now because the equation V=0 is linear, it follows that differential coeffi-

cients of any solution, with reference to &, 7, 2, or linear functions of such differential
coeflicients, are also solutions, Hence the terms V, and V=2, of 9, give harmonics of

. ' . .dd dd dd ;
the degrees ¢—1 and —(¢42), in & g To solve equations (3) we have therefore
only to solve
Vu=g,,

where ¢, denotes an entire spherical harmonic of any positive or negative degree, n.
Tryin
yme u=Arg,,

which is obviously the right form, we have
I 2072 d d d .
Vu=A{IV 0,42 by £ 42 ) 0,070}
But, because ¢, is a homogeneous function of #, g, z of degree n,
d, d, d\.__ .

and because it is a spherical harmonic,

V¢,=0.
‘We have also
Vi(r*)=6,

Viu=A.2(2n+3)g,,

and therefore the complete solution of the equation

by differentiation. Hence

Viu=g,

7'2
u=V+2(2n+3) Pns

is

where V denotes any solution of the equation

V2V =0.
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11. Hence, by taking for ¢, the terms of ﬁ 38, D above referred to (§ 10), and

giving » its proper value, ¢—1, or —(z'+2), for each term as the case may be, we find,
for the complete solution of (3), the following :—

— ! pa=2i—1 mr? Qi

o= {ubulr ot (Ve Ve)),

— ! =21 mr? -2i~1

B._E{v.-+v,.7'2 T V=V )} S )
. ! -9 mr? ! pa=2i—1

7—E{wi+wﬂ" - n.2(2i+1) dz(V —Vir )}

where u;, ;, v, vi, w;, w; denote six harmonics, each of degree 3.

12. But in order that these formulee may express the solution of the original equations .
(1), the functions u, v, &c. must be related to the functions V so as to satisfy equations
(2) and (3). Now, taking account of the following formula,

< d%) 3y ( d%) TE < d%) < &ty dy+z dz) Pit+1"V?0:

which becomes simply 2¢,,

if @, is a spherical harmonic of any degree ¢ (whether positive or negative, integral or
fractional), we derive from (9) by differentiation, and selection of terms of order ¢, and
of order inverse ¢ (or degree —i—1),

da_l_dﬁ dy__ 2{4/ i n(2::n+1)[iV,--I—(?:—I-l)V;?"ﬁ"’]}’

where, for brevity, we put

—— 1+1 l+l dw1+1 ‘
and Y= —:( d)z;( vy )1 ... (0
91 ul l _2’+1 vz l -—21 1 W r_2,+1
v Gt g T I
Hence, to satisfy (2) and (8),
mi
V‘=‘7"“n(2i+1)v-‘
and V'_ ! (Z-I-l) 'VI
‘—\Pi— n(2i41)
from which we find
n(2i+1)
Vi= (2n+mz+n\k’
¢ § 3
! n(2i+1) o, (
V'—(2n+7n)z+n+m"’ -
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13. Using these in (9), we conclude

=si=e oo T i[ R £ ] 1
0= 2i_¢ *{%ﬂ("}"tb_ﬂ' 2 dzl(2n+m)i+n (2n+m)i+n+m. s |

=3i=» ) i —2i+1_ﬂ_17‘_2_c£[ ¥ _ ‘Vir—%—l BT
ﬁ =0 {vz—fl +Lz—l r 2 dy (2n+m)z+n (2n+m)z+n+m 1] ( )

. , . 2 ) it Ut
Y=32 {wiﬂ_l_wi!'ﬂrm“—%diz[(Qn+fzJ;)i+n_(2n—g’;n)i+n+m } )
for a complete solution of the general equations (1), the equations of equilibrium of an
isotropic elastic solid. The circumstances for which this solution is appropriate will
be understood when the general proposition of § 7 is duly considered.

14. It remains to show how the harmonics u;, v;, w;, u;, v;, w; are to be deter-
mined so as to satisfy the superficial conditions. Let us first suppose these to be
that the displacement of every point of the bounding surface is given arbitrarily.
Let 3A,, 3B;, 3C; be the harmonic series, expressing the three components of the
displacement at any point of the outer surface of the shell, and 2A;, 2B;, 2C; the
corresponding expressions for the given condition of the inner surface. Thus the
surface-equations of condition to be fulfilled are

lu:EAi,
r=a 4 =2B;,
[ y=2C;,
[ a=TJA;,
7”::0;’4 B=3B;,
ky=20;’

where ¢ and ¢ denote the radii of the outer and inner surfaces respectively, and
A;, B, C;, Ai, B;, C; spherical surface-harmonics of the order 7.

15. Now collecting from the series (12) of § 13, which constitute the general expres-
sions for &, B3, v, those terms which, being either solid spherical harmonics of degrees
7 and —¢—1, orsuch functions multiplied by 7% give, at the boundary, surface-harmonics
of the order ¢, and equating the terms of this order on the two sides of equations (13),
we have

# For the case i=0, the terms u; 14_1, '“’;_1 may be omitted; but their full interpretation would be to

-1
express a displacement without deformation. Thus «_,, being of degree ~1, cannot but be %, where A is
a constant ; and therefore u:.__ ,7—2%+1 becomes A when ¢=0.

+ That is, series of terms each of which is a spherical surface-harmonic of integral order <. That any
function ; arbitrarily given over an entire spherical surface, may be so expressed, is a well-known theorem.
A demonstration of it is given in TmousoNx and Tarr’s ¢ Natural Philosophy,’ chap. i, Appendix B, § s.
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%-l-u'#"”‘“-@.’f.‘z [ Yigr _ Yir ¥ 1 [=A; when r=a,
R 2 dzl(@n+m)i+3nt+m (2n+m)i—nl | =A; when r=d,
' g 2dr ¥ Yi_r~ % 1 [=B; when r=a \
V. ' a—2i—1_ M & i+1 — Vi i 3 .. (15
i tor 2 dyL(@n+m)i+3nt+m (2n+m)i—nl |=B; when r=d, " (19)
w~+w’-¢‘2i"-—’1‘f_d_ B Yigr _ '4’;—17'—2“-] ] [=Cz when r=a,
PR 2 dzL(@ntm)i+3n+m (2n+m)i—nl | =C; when r=d.

16. These six equations would suffice to determine the six harmonics u;, v;, w;, %;, vj, Wy,
if 4;;, and +J;_, were known. For, since each of those six functions is a homogeneous
function of «, 7, z of order ¢, each of them divided by #* is a function of angular coordi-
nates relative to the centre, and independent of 7; and therefore if, for instance, we denote
u; by 7= and «; by 7=, we have two unknown quantities = and »’ to be determined by
the two equations of condition relative to « for the outer and the inner surface. These

equations may be written as follows, if we further denote 3%}‘ by 7%, and é@:}éa}:"fﬂ
by 7~'¥, because these are homogeneous functions of the orders % and —i—1 respect-
ively:

ma2i+3 maﬁ )
Nt T mi e ] Y T S[@armyi—a] Y

Ua2i+l +@'I=Aiai

mal2i+3 mal?

i+l+2[(2n+m)i+3n+m] S“"2[(2n+m)i—n] V.

w0 o' =Ald

Resolving these equations for = and »', and returning to the original notation instead
of m, @, 3, ¥,

. , =2t
(@ 1A — a1 A7 + (0243 — g5 +3) My d‘ll’i";l —(a®—d?)M;_, d("’:—zi; ) y2i+1
U= — 2B g1 4 0
(ad)i+1 (@' A;— aA,)ri — (aa!) 2+ (a2 — a?) M4 d\z:_” — (aa!)2(a?~1 —a"=1)M;_, dlioir2it) :Z;ziﬂ) 72t
"= P W T ' ’
where, for brevity,
M‘+2= ".z 9
¢ 2[(2n+m)i43n+m
M

2= ol @ntm)i—n]
Introducing, also for brevity, the following notation,

a""'lA,-—a”“A; \
P Y N

a,

R € 1)
%, _(aal)i+l(aiAi_ahAi) ,

a2i+l _al2i+l

q2i+8 — glei+s . —a®
M, = 2B gt it s gl z-z=mmM i-25
- __(ad)? (82 —d"?) , (ad)?(a2—1 — a'2~1) - - (18)
B = P Mz, 8= 1 T i-2

MDCCCLXIII. 41
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we have the expressions for u; and u; given below. Dealing with the equations of
condition relative to 3 and y, and introducing an abbreviated notation B;, B;, C;, C;
corresponding to (17), we find similar expressions for v;, v;, w;, w;, as follows :—

= qr M., d‘g:‘ ;ﬁﬂ;_zd(‘l" ;2‘2'“) s
v—m+m.+2d‘b‘“ m:_z%d(¢';;y P ¢ 1)
i €, g I s
=Bt ,,, 0 g I g
o =B~ ﬁmd‘f}’;l—ﬁ;_2—-—-—d(‘“-§’y’”“)w+l,» -1
W= €= B, ity Mot i

17. It only remains to determine the functions +} and +}!, which we can do by com-
bining these last equations with (10) of § 12. Thus, changing ¢ into¢-41 in (17) and
into ¢—1 in (18), applying equations (10) of § 12, and taking advantage of the following
properties,

Vidia=0, Vi(§irs-1)=0, &o.,

(.4,z -2~ l) (4},7'—2’ 1) (‘l’tr 2— l
ity +2 —(i+1)¥,

ay
and
iz dd;,
d.z'+ dy+ dz = '4’“
we find
it1
\P_ z+17‘ )+d(33;+17" )+ (@H-ﬂ‘ )+(2Z+3)(Z+1)ﬁaz.—1 Y,
) (21)
‘%_{ (@, Er )+d(715,_1r )+ (2 z—lr )} 2i+l+(2?:—1)iﬁi+1""i-
These equations, used to determine the two unknown functions ¥; and ¥, give
Y= Oi+ (2 +3) (i + 1), 0 \
—(2i+3)(2i—1)(+ )il Rirr 22)
Y= (2i—1)i$.,0;+ ©; ,
NP 1—(2i43)(2i—1)(i + 1)if;, i,
where, for brevity,
” @—-d(%""riﬂ) d(iswl?‘”) d(@zﬂrﬂ'l)
="t T
(23)

®;={ d(@;_yr ')_I_d(iﬁ,-lr )+ (@i—xr )} oz |
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18. The functions 4} and +J/ being expressed in terms of the data of the problem by
equations (22), (23), (17), (18), (16), we have only to use (19) and (20) in (12) to find
the following expression of the complete solution :—

—2i-3)] )
=3{ a0+ s @M e (mér”'”+ﬁé—M’ﬂ“>%é%—*)}’
p=3{n 431 (2 M) Y e ) W (24
y =3 ' € (88— 9~ M) S — (e M) Wi Y

19. This solution leads immediately, through an extreme case of its application, to
the solution of the general problem for a plate of elastic substance between two infinite
parallel planes:—Given the displacement of every point of its surface, required the
displacement of any interior point. For if we give infinite values to ¢ and o/, and keep
a—a finite, the spherical shell becomes an infinite plane plate.

20. It is, however, less easy to deduce the result in this way from the solution for
the spherical shell, than to apply directly the general method of § 6 to the case of the
infinite plane plate. "We shall return to this subject (§ 81, below), when the details of -
the investigation will be sufficiently indicated.

21. A very important part of the general problem proposed in § 1 remains to be
considered,—that in which not the displacement, but the arbitrarily applied force, is
given all over the surface. To express the surface-equations of condition for such data,
we must use the formule expressing the stress (or force of elasticity) in any part of an
elastic solid in terms of the strain (or deformation) of the substance. These are

P =(m+n)+m—n)(5+5)

Q= () +(m— n)< "“)- .
R=(m-+n) % +(m—n) (d“;'i' @) ;

_dﬁdfy‘_dryda._dac_lé.
S =n (,Tz"'zzy) T—"(@ h@) ; U=n (E&erw)

where P, Q, R are the normal tractions (Which when negative are pressures) on the
faces of a unit cube respectively perpendicular to the lines of reference OX, OY, OZ,
and S, T, U the tangential forces along the faces respectively parallel, and in the direc-
tions in these planes respectively perpendicular, to OX, OY, OZ (see Appendix, § 70).
22. In terms of these we have the following expressions for the components F, G, H
of the force on a unit area perpendicular to any line whose direction cosines are £, g, A :—

F =Pf+Uy+Th,
G=Uf+Qg+Sh ¢ . . . . . . . . . . (26)

H=Tf +Sg +R#
41,2
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(see “ Elements of a Mathema‘tical"l‘heory of Elasticity,” Philosophical Transactions for

1856, p. 481).
23. Using the expressions (25) in (26), we find

F=(n—n) (g+g + ) /+0(m S+ ot T1)+n(Zr+ Lo+ Zh). . @0)

and symmetrical expressions for G and H.
24. If now we suppose f, ¢, b to denote the direction-cosines of the normal at any

point &, 9, z of the surface of an elastic solid, the surface condition, when force, not
displacement, is given, will be expressed by equating F, G, H respectively to three
functions of the coordinates of a point in the surface, quite arbitrary except in so far
as they must balance one another in order that equilibrium in the body may be possible;
and therefore they must fulfil the following integral equations:—

fFaQ=0, {fGdQ=0, fHIQ=0, . . . . . . . . . . (28)
f(Hy—G2)dQ=0, [[(Fz—Hz)dQ=0, [[(Gz—Fy)=0, . . . (29)

where dQ denotes an element of the surface at the point (, y, 2), and the double
integrals include the whole surface of application of the forces ¥, G, H.
25. For our case of the spherical shell, with origin of coordinates at its centre, we have

=%, g=%, h=%; . ... (30)
and the last triple term in the expression (27) for F may be conveniently written thus:—

nd(ax+/3y+yz) ne

T de T e e e e e e e e (31
Then, for brevity, putting

ar+Py+yz=¢ . . . . . . . . . . . (32)
and

d, d, d__d

xd—w-l-y@-_l-zﬁ_r‘—i;, B £: 1))

where jf: prefixed to any function of #, ¢, z will denote its rate of variation per unit of

length in the radial direction; and using (2) of § 3, we have, by (80) and the symme-
trical equations for G and H,

Fr =(m—n) .w+n{ <1' ‘%—-1) o +’%‘},

. (34)

~
.
.
-

Gr:(m—-n)B.y-l—n{(r%'—l)ﬁ_l_jl_g}’ |
Hr=(m—n).z +n{(¢%—1)y+g—§}. |

26. It is to be remarked that these equations express such functions of (z, g, z), the
coordinates of any point P of the solid, that F.w, G.», H.w are the three components of
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the force transmitted across an infinitely small area » perpendicular to OP, while, for any
point of either the outer or the inner bounding spherical surface, Fv, Go, Ho are the
three components of the force applied to an infinitely small element w of this surface.

27. To reduce the surface-equations of condition derived from these expressions to
harmonic equations, let us consider homogeneous terms of degree ¢ of the complete
solution, which we shall denote by «;, 3;, v;, and let 8,_,*, ., denote the correspond-
ing terms of the other functions. Thus we have

Fr =2}{(m-—n) 1 +n(— 1o 40— dg’“ }

Gr_Z{(m-—n)B_ fn(i—1)B4n ”’C‘“} N )

Hr.—S{(m—n)S,_lz—kn(z Vyitn—+ iy }

28. The second of the three terms of order 7 in these equations, when the general
solution of § 13 is used, become at the boundary each explicitly the sum of two surface
harmonics of orders 7 and ¢—2 respectively. To bring the other parts of the expressions
to similar forms, it is convenient that we should first express {;,, in terms of the general
solution (12) of § 13, by selecting the terms of algebraic degree ¢. Thus we have
m? iy

“=th—y [(@n+m)i—n—m] dx ’

C e .. (36)

and symmetrical expressions for 8; and v, from which we find

D
e+ By+y: =§i+,=uw+v,~y+w.-z—2[(£;+1,),l')'§i¢,;_m] :

Hence, by the proper formule [see (42) below] for reduction to harmonics,

1 [(2i—1)[m(i—1)—2n] 7
Z"‘“=_2z+1{2z[2n+1:,n)z--’n-—n_zz|l :—1+¢;+1}, <. . (37)

where

Pis1 ;—:r’i+3{4(ui’;t—. ) +M + M}, .

W - C .. (38)

and (as before assumed in § 12)

du; | dv; | dw; Y £:10)
'4’._.1-—dw+ dy_l_ dz . . . . . (39)

Also, by (11) of § 12, or directly from (36) by differentiation, we have
L Lt ) R €11

Zn+m)i—n—m
Substituting these expressions for 3,_,, @;, and ., in (35), we find
# When ¢—1 is positive, ¢;.; will éxpress the same function as V;~, of § 9 above. The suffixes now intro-

duced have reference solely to the algebraic degree, positive or negative, of féhe functions, whether harmonic or
not, to the symbols for which they are applied.
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n(2i—1)[(m— 2n)i+ 2m+n]

n[2i(i—)m—(2i—V)n] dli, n dpu,

F"=2{”(75_1)“=‘+ (@D [(mT Znji—m—n] TV @G r D[t 2n)i—m—n]’ do T+l da

This is reduced to the required harmonic form by the obviously proper formula

[ iy it
zv,._l—_-é—i_—l{ w+~(——;ﬂ;—~)}.. (42

Thus, and dealing similarly with the expressions for Gr and Hr, we have, finally,

Fr —-nz{(z—l)u —2(—=2)Mp*—— 2 Gy EW‘*‘J(\I""‘}Z%H) —zii 1 %}a
Gr:nz{(i—l)vi —2(i— )Mt —Epen Mt 1 ”’fl;‘}, L (43)
—2i+1 d i1
Hr-—-nS{(z—l)w oMy it g b ™) 1 q;;}
where [as above, (16) of § 16.]
m
M= _2 (m+2n)z—m—n
and now further N €2

_ (m—2n)z+2m+n
T (24 1) [(m+2n)i—m—n] ]

29. To express the surface conditions by harmonic equations, let us suppose the
superficial values of F, G, H to be given as follows:

F=3A,,)
G=3B,, ;when r=aq,
H"—"EO”
and N (25
F=2A},
G =3B, iwhen r=d/,
H=3(;,

where A;, B;, C;, A;, B;, C; denote surface harmonics of order . Now the terms of
algebraic degree ¢, exhibited in the preceding expressions (43) for Fr, Gr, Hr, become,
at either of the concentric spherical surfaces, sums of surface harmonics of orders ¢ and
i—2, when ¢ is positive, and of orders —i—1 and —¢—3 when ¢ is negative. Hence,
selecting all the terms which lead to surface harmonics of order ¢, and equating to the
proper terms of the data (45), we have

}. (41)

"!"z 1 d"”“‘
(9,—1)@0—(z+2)u_,_l — 20,y - 2(i - )M {A when r=a (46)
r . (\l’i—ﬂ' 2i+1) —2i—1 (,1,_!,_27.2&3) 1 gy dp—s A; when r=a,

and symmetrical equations relative to y and 2.
80 These equations might be dealt with exactly as formerly with the equations (15)
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of § 15. But the following order of proceeding is more convenient. Commencing with
the first of the surface equations (46), multiplying it by (g) : attending to the degree of

each term, and taking advantage of the principle that, if ) be any homogeneous function
of z, y, 2, of degree ¢, the function of angular coordinates, or of the ratios 2:y:2,

which it becomes at the spherical surface r=a, is the same as ( ) +J for any value of 7,

we have
, . 2+l i 1 g,
| 6=Du—42) (5) w2 R 2N (5) )
n , =a(}),
¢ i1 (i~ %4 —gim AW ar®*3) dp; 11 r\ 2%+ dp_; a
—Epn ) B arn S s [ <a) o
where the second member, and each term of the first member, is now a homogeneous
function of degree i, of , g, z (being in fact a solid spherical harmonic of degree and
order ¢). Taking El% of this, and Edg} and ‘—Z;: of the two symmetrical equations, adding,
taking into account equations (38) and (39), and taking advantage of the equation
V2V =0 for the solid harmonic functions concerned, we have
A . . . 2i+1
A= 1 Qi DB — 2+ Do 10 =2 D2+ DM () 4o (48)
4
_ 1[dAr) | d(Bir) d(Cﬂ')
— { o }
Again, multiplying (47) by ¢~*r~*~, and taking 7*** d% of the result, dealing similarly
with the two symmetrical equations, and adding, we have
2i+3
M viamtgu [+ 2= @A+ (5) Formarh 2D M |
s (At d(B,r"“) d(Ca—1) (49)
—git? l dz + + dz }'
Changing ¢ into —2 in this equation, we have
%{2(73— 2)a~2¢,_,—[t—(2¢—3)(¢—1)E_; ] (%) ) Y_i+2(1—2)(e—1)(2¢— 3)M,..4,._1}
T

P [d(Ay =) | d(Bir=i+) | d(Cigt)
=4\ dx + dy dz }
Precisely similar equations, derived from the inner surface condition of the shell, are
obtained by changing a, A, B, C into ¢/, A’, B', C'.  We thus have (48), (50), and the
two corresponding equations for the inner surface, in all four equations, to determine
the four unknown functions ;_;, ¥_; ¢;_), ¢_;, in terms of the data which appear in
the second members. The equations being simple algebraic equations, we may regard
these four functions as explicitly determined. In other words, we may suppose ¢; and
+; known for every positive or negative integral value of ¢. Then equation (47), the
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two equations symmetrical with it, and the others got by changing A, @, &c. into A/, ¢/,
&ec., give u;, v;, w; explicitly in terms of known functions, and the expressions (36)
for @;, B;, y; complete the solution of the problem.

81. The solution for the infinite plane plate is of course included in the general solu-
tion for the spherical shell, as remarked above for the case in which surface displace-
ments, not surface forces, were given; but, as in that case, it will be simpler and prac-
tically easier to work out the problem @b initio, taking advantage of the appropriate
Fourier forms. The relative ease of the independent investigation is indeed still greater
in the case in which the surface forces are given than in the other case, since the general
expressions for the surface forces assume simple forms when the surface is plane, and
require no such transformation as that which we have found necessary, and which has
constituted the special difficulty of thé problem, when the surface was spherical. The
problem of the plane plate presents many questions of remarkable interest and practical
importance; and although the object and limits of the present paper preclude any
detailed investigation of special cases, we may make a short digression to work out the
general solution.

32. Let the origin of coordinates be taken in one side of the plate and the axis OX
perpendicular to it. Then, according to the general expressions (25) of § 21, the three
components of the force per unit of area, in or parallel to either side of the plate, are
respectively

parallel to OX, P =(m-n) g§+(m—n) (%3_[_%)’

de  d| :
parallel to OY, U=n<‘7‘g+£>, L ... . (B])

_ {da | dy
parallel to OZ, T _n(§+%>.

The surface condition to be fulfilled is that each of these functions shall have an arbi-
trarily given value at every point of each infinite plane side of the plate.

33. From the indications of § 6 above, it is easily seen that the following assump-
tions are correct for a general solution of the equations of internal equilibrium, and con-
venient for the application at present proposed,

dp
@=1u +x% s

d
B=wv +Jv;j§,

de
7=’LU—|—.Z'ZE s

where u, v, w, and ¢ denote functions of (af, 9, z) which each fulfil the equation V'V=0.
From these, by differentiation, and by taking ’¢=0 into account, we have

de  dB  dy du dv  dw  dp
wtoyte=atoytzra’
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or
Y=Y+

if e (73]
V=gt T

and d be used with the same signiﬁcation as above (§ 2). Also, by differentiation and

application of the equations Viu=0, V* ———O we find

e
Vu=2gt, Vi=2zl, Vy=agl.

Hence, to satisfy the general equatlons of internal equilibrium (3) of § 3, we must
have

dp__ m
dz—  m+2n ¥

Hence the general solution becomes
ma )

e=u—_"o¥

_ ma dj‘\l/dw 3
B_v_m+2n—“dy ) e e e e e e e e (5)
_ mz dS\[/dx

y_w_m+2n—dz—’

where u, v, w are any functions whatever which satisfy the general equation V?V=0,
and ¥ is given by (52); and where, further, it must be understood that {$da must be
so assigned as to satisfy the equation V*V=0, which 1 itself satisfies by virtue of (52).

34. The general form of the solution of V*V =0, convenient for the present applica-

tion, is clearly O]
cos 2

where p, s, ¢ are three constants subject to the equation
-p2= 2+t2.
If now we suppose, as a particular case, the surface condition to be that

P=A sin (sy) sin (¢2),) )
=B cos (sy) sin (¢z), pwhen 2=0,

T=C sin (sy) cos (¢z),
and . o e e . (B
P=A'sin (sy) sin (#2),)

U=B'cos (sy) sin (¢z), Lwhen r=a,
T=0C'sin (sy) cos (¢z),] )
MDCCCLXIIL 4M




6598 PROFESSOR 'W. THOMSON ON DYNAMICAL PROBLEMS REGARDING

where A, B, C, A, B, (' are six given constants, we must clearly have

w=(fe "+ f'¢*) sin (sy) sin (¢z),
v=(ge?+¢'¢*) cos (sy) sin (?z), BN (13
w=(heI'e) sin (sy) cos (tz),

where f, ¢, h, f', ¢, B’ are six constants to be determined by six linear equations
obtained directly from (64), (61), (53), (52), (95). But, by proper interchanges of
sines and cosines, we have in (54) a representation of the general terms of the series
“or of the definite integrals, representing, according to FourIEr’s principles, the six
arbitrary functions, whether periodic or non-periodic, by which P, U, T are given over
each of the two infinite plane sides. Hence the solution thus indicated is complete.

35. To complete the theory of the equilibrium of an elastic spheroidal shell, we
must now suppose every point of the solid substance to be urged by a given force.
The problem thus presented will be reduced to that already solved, by the following
simple investigation.

36. Let X, Y, Z be the components of the force per unit of volume on the substance
at any point #, y, 2. (That is to say, let ¢X, ¢Y, ¢Z be the three components of the
actual force on a volume ¢, infinitely small in all its dimensions, enclosing the point
(#,9,2). Not to unnecessarily limit the problem, we must suppose X, Y, Z to be each
an absolutely arbitrary function of x, g, 2.

37. When we remember that z, y, z are the coordinates of the undisturbed position
of any point of the substance, and differ by the infinitely small quantities «, 3, ¢
from the actual coordinates of the same point of the substance in the body disturbed
by the applied forces, we perceive that Xda+Ydy-+Zdz need not be the differential
of a function of three independent variables. It actually will not be a complete
differential if the case be that of the interior kinetic equilibrium of a rigid body
starting from rest under the influence of given constant forces applied to its surface,
and having for their resultant a couple in a plane perpendicular to a principal axis.
Nor will Xda+Ydy-+Zdz be a complete differential in the interior of a steel bar-
magnet held at rest under the influence of an electric current directed through one
half of its length, as we perceive when we consider FARADAY'S beautiful experiment
showing rotation to supervene in this case when the magnet is freed from all mecha-
nical constraint. ' .

38. The equations of elastic equilibrium are of course now

5 3
nVie-+m 3—3}: -X,

(56)

v

nVB+m@__ Y,

ds
"V27+m3;="‘ .
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Let @, ¢, ¢ denote some three particular solutions of the equations

Vig=-X, l
Vi =—_Y, . (87)
Vig=—7. l

These, w, ¢, 5, we may regard as known functions,ﬁ being derivable from X, Y, Z by known
methods (THOMSON and Tair’s ¢ Natural Philosophy,’ chap. vi.). Then, if we assume

o——=u,
T N )
o
Y= n =%
d da, | dB, | & .
” N L)

the equations (56) of interior equilibrium become

dd, m df
nV2u,+m%= 7 dz )

‘ dd d ~
aVBAmG=—TE b (60)
dd m df
WA= &
where £ is a known function given by the equation
R (1
=Tty tE (61)
Now, as we verify in a moment by differentiation, equations (59) and (60) are satis-
fied by . —m 49
al:n(m+n) dz’
—m  dd
ﬁ,:'mﬁﬁ . . . . .v . . . . . (62)
_ —m d¥
: . Y =nm+n) de’
if  is some particular solution of
V=L . . . . . . . .. .. (63

Hence (58), (57), (62), (63), (61) express a particular solution of (56).
39, We conclude that the general solution of (56) may be expressed thus:—

1 m  d3 )
w—ﬁ<w_m+n %) +e,

p:%@_7£%%)+$,f (8

1 m d3 ‘
=;(o’ “m+n %) +'r,
4 M2
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where
o=V"2X,
e =V,
¢ =VZ, * (65)

y=v- (dx+ +dz)

according to an abbreviated notation, which explains itself sufficiently; and '«, '8, 'y
denote a general solution of the equations
[)
d_'Y) =0,

ng (Gt o+ E
avpm g (Gt ) =0

)_0

40. This solution is applicable of course to an elastic body of any shape. It enables
us to determine the displacement of every point of it when any given force is applied
to every point of its interior, and either displacements or forces are given over the
whole surface, if we can solve the general problem for the same shape of body with
arbitrary superficial data, but no force on the interior parts. For ', '3, 'y are deter-
mined by the solution of this problem, to be worked out with the given arbitrary super-
ficial functions modified by the subtraction from them of terms due to the parts of &, 3, ¢
which are explicitly shown in terms of data by equations (64) and (65).

nV0u4m

N

(66)

ad'g  dly
o

. d
nVy +m - (

_m 45
m4+ndz)’
m_d3
m+tndy)’
m dy

41. Hence the problem of § 35 is completely solved,—whether we have displacements
given over each of the two concentric spherical bounding surfaces, when the solution of
§9 14-18 determines'x, '3, 'y ; or forces given over the boundary, when the solution of
§9 26-30 is available. In the former case the superficial values of the functions

1

o

1

.

1

ﬁ(d T m+n ZE) ’
known from equations (65), must be subtracted from the arbitrary functions given as
the superficial values of «, 3, y, and the residues, expressed in surface-harmonic series
by the known method, will be the harmonic expressions for the superficial values
of 'a, ’B, 'y. In the latter case, we must first substitute those known functions
(w g dx) &c., instead of «, 3, ¥ respectively in (34), and the values of Fr, Gr, Hr

thus found must be subtracted from the given arbitrary functions representing the true
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superficial values of Fr, Gr, Hr. The remainders, which we may denote by 'Fr, 'Gr,'Hr,
must then be reduced to harmonic series, as in (45), and used according to the investi-
gation of § 30, to determine 'e, '3, 'y

42. The general solution (64) and the expression just 1ndlcated for the terms to be
subtracted from the data so as to find 'Fr, 'Gr, 'Hr, becomes much simplified when, as
in some of the most important practical applications, Xdz+Ydy+Zdz is a complete

differential. Thus let
dwW dwW A%

_X=—d"z“ ’ Y—— dy Z— dz ° . . . . o e (67)
W denoting any function of #, , z. Then, assuming, as we may do according to (65),

w—gz VW,

we have by differentiating, &ec.,

and therefore
S=V-W. . .. .. ... ... (68

Hence the solution (64) becomes
1 dy )
T m+n 7.74'+ e

1 4%
B=mamgytB b o . (69)

1
Y= m-n dz+ 7.

o

From this we find

m+nW+’B
and (§ 25)

1 d&
=it m 6
i metn dr G (0

v=teptfy Ly

and

'Z='m+’ﬁy+,'}’z-

2 foenWetal (r 1) 6]

d d d d
&= ("z;+1)¢7

Hence, by (34),
Fr=

But
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Thus for Fr, and the symmetrical expressions, we have

Fr ————{(m—n)Wa:+2nr i @)+ |
Gr= {(m —n)Wy+20r 5 dy}-{-Gr | (1)
Hr= m_,_n{(m )Wz ~+2nr - Z;}+’H

43. These expressions become further simplified if W is a homogeneous function of
any positive or negative integral or fractional order ¢-+1, in which case we shall denote

it by W,,,. For 3 will be a homogeneous function of order -3, and of order z-42.
Hence

d d . a3
Hence the preceding become

el st
& m+n{(m M)W 3/+2"’(7'+2)d} +Grt ... .. (T2)
Hr=m+n{(m—”)ws+l 2 +2n(i+2) E}""H

44. These expressions are the more readily reduced to the harmonic forms proper for
working out the solution, if the interior force potential, W,,,, is itself a harmonic
function. 'We then have (§ 10)

; a_ 1 LW
3— (21+5) 2VV‘.+17 dr— 2z+5($Wz+1+2 o )]
and .
1 dW; d(W; . r—2-3
W,-_,_l.%'-.:m{;ﬂ ___d;'t}_g,.zwﬁ (_j-d_lg__)},
which give |
1 [m+G+n ,dWiy, m@i45)—n . d(W; r%-9) , ,
Fr=om 243 | "(2i+3)(2.,-.+5)9“2+5 m }+F¢~,. )

and symmetrical expressions for Gr and Hr. Here the terms to be subtracted from the
arbitrary functions given to represent the superficial values of Fr, Gr, and Hr are each
explicitly expressed in sums of two surface harmonics of orders ¢ or —¢—1, and ¢+42 or
—i— 3 respectively, viz., in each case, that one of the two numbers which is not negative.
45. When the shell is in equilibrium under the influence of the forces acting on it
through its interior, without any application of force to its surface, we must have

Fr =0,)
Gr=0,}when r=¢ and when r=a'. . . . . . . (75)
Hr=0,)
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Hence, for the case in which W is a spherical harmonic, the preceding equations
give the proper harmonic expressions for 'Fr, 'Gr, 'Hr at the outer and inner bound-
ing surfaces, for determining ', '8, 'y by the method of §§ 28-30. Thus, using all
the same notations, with the exception of 'a, '8, 'y, 'F, 'G, 'H, instead of «, 3, v,
F, G, H, and, for the present, supposing ¢-+1 to be positive*, we have the complete
harmonic expressions of 'F, 'G, 'H, each in two terms, of orders 7 and 32 respect-
ively. Hence the A, A/, &c. of (45) are given by the following equations:—

A A mt (e dWin

attl ali+1 (2z+3)(m+n) dz

_Bi—_B_"'-—_ m+(i+1)n W.—idWHl ,

G v (2i+3) (m+n) dy

Ci - C; o m+(z+1)n ~i sz+l

TR L |
@S]0 N -

Avs__Aips_  @i4+5)m—n iz dWipr=-9)

@ AT (20 43)(2i45) (m A n) dx

Bivs__ B;+2— (2i+5)m—n gi+s (W r—2— 3)

it glitt _(2i+3)(2i+5)(m+ n) dy

Civs_Cia_ (2+5)m—n__ jug dWisp—9)

attl T gt (264 3)(2¢+5)(m+n) dz )

46. The functions derived from A;, B;, C;, &c., which are required for formule (48)
and (49), are therefore as follows :—

d(Ay? d(B i) d(Car) .
(dxr) 4 dB) 4G 0,
d(Air—i—1) d(Bz"""") dCr—1) _ (i+1)(2+1)[m+ (i+1)n] ai+!
dz + dy + dz - (2i+3)(m+n) : 248 VWit1s -
d(Airr*?) Biyar'* ) d( ,+2r'+2) _ (+92)[(2i+5)m—n] ,+1W - (70)
dz dy + —T (20+43)(m+n) 419
d(Aiyar=%) | d(Biryr—=3) , d(C ,+2r“—3)_

/

with the corresponding expressions relative to A;, B;, C;, &c., obtained simply by
changing « into o'

Hence by (48) and (60), and the two corresponding equations for the inner surface,
we infer that each of the four functions ¥;_,, ¥_;, @;_,, ¢_; vanishes. By the same
equations, with ¢ changed into 42, we obtain expressions, all of one harmonic form,
direct or reciprocal, as follows, for the four functions of order ¢4-1:—

* Ag we shall not in the present paper consider particularly any case of a shell influenced by centres of
force in the hollow space within it, which alone could give a potential W, of negative degree, we need not
write any of the expressions in forms convenient for making ¢+1 negative.
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‘t’i+1 =Ki+1Wi+19
‘t/—i-—2=K;+x'r—2i_sWi+1 5
i1 =Li+lWi+17
¢—i—2=L;+x7'—2i_8Wi+1 s )

(78)

Kii1s Kiyiy Ly, Liy,, which need not be here explicitly expressed, being four constants
obtained from the solution of four simple algebraic equations. Lastly, by the four
equations with (¢-}4) instead of ¢, we find that ¥;,5, ¥_;_s, Giys» ¢, all vanish. Using
these results for +) and ¢ in (47), we see that each of the functions ¥ must be a harmonic

. . —2{~3
congruent with either dV;;, or d(W'J'd'; ), Hence, by using (78) in (38) and (39) we
find
W = it CALTS W = —Ki p2-1 AL \
T+ N6+ de 1T Qi+ 1)+ 1) de ’ (79)
-Kin p2i+s d(W,'+17‘_2"_3) W = ""L,i+1 d(Wi-;.ﬂ'_%_a) .
—-t—=3" ’

Ui 2™ (2i45)(i+2) dz ’ (2:+5)(:+2) dz

and symmetrical expressions for v and w. Finally, using these expressions, (79) and
(78), in (36), and the result in (69) with (73), we arrive at an explicit solution of the
problem in the following remarkably simple form :—

dW.‘ ' dW, —2i—3
e=€;,, d.z'+l+@i+l ( ':;; ):
dWZ ’ dW; —2—3
B=¢€,,, dy+l+@i+l( ;; )> S I (80)
dW,, ’ dW, —2i—3
y=¢€., dz+l+@i+l ( t;: )a
where
QE‘ =_Li+l+K,i+l7‘_2i_l+ 1 _lm Ki'“
s (GE+1)(2i+1) 2(2i4+3)(m+n) 2 (m+2n)itm+3n[ ’ (81)
@ ___Ki+1"‘2"+5+L;+x+ —rlits _I_m_rg Kin
I TG+ 2)(2i+5) (2i+3)(2i+5)(m+n) ' 2 (m+2n)i+2m+3nf

47. In conclusion, let us consider the case of a solid sphere. For this we have
‘!’—i—2=0’ and ¢_5_2=0,

as we see at once from the character of the problem, or as we find by putting ¢’=0 in
the four equations by which in § 46 we have seen that K,,,, Ki,,, L;,,, Li,, are to be
determined. Then, by (48), with ¢ changed into 42, and by (49), we find

_ (i +2)[(m+ 2n)i +m + 3n][m(2i + 5) —n] W
Y= T (20+3)n{m[2(+22+1]—n(2+3)} (m+n) T

L G+1)2(2i+1)[m(+3)—n]
P =0 TG T2 4 1] —n(@i T 3)]

. (82)
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The coefficients of W,,, in these expressions are the values which we must take for
K., and L,,, respectively in (81); and therefore, after reductions which show (m-n)
as a factor of the numerator of each fraction in which it appears at first as a factor of
the denominator, we have

_ (E+1)[m(i+3)—n]a? [(¢42)(2¢4-5)m— (2¢ + 3)n]r? , )

Ci= =G lm2(i+ 27+ 1] —n(2i+ 3)} T 2n(2i+3) {m[2(i+2)°+ 1] —n(2i + 3)]

;o (24 1)mr2+5 .
1= (2 3) (m[ 20+ 2)°+ 1] —n(2i+3)}

. (83)

¢

These, substituted in (80), give expressions for «, 8, ¥ which constitute a complete and
explicit solution of the problem.

It is easy to verify this result, by testing that (56) (with —X=4Win

dr
fied for every point of the solid, and that equations (34) give F=0, G=0, H=0 at the
bounding surface, r=a.

48. The case of =1 is, as we shall immediately see, of high importance. For it the
preceding expressions, (83) and (80), become

—10(4m—n)a®+ (21m—>5n)r?
b

, &c.) is satis-

€= 10n(19m—57)

@g==16%(§§§;3§5,

w=@fjjﬁ+@;d<“’;;"‘>, L (8Y)
ey )

y= @2%7;2 1+ e @l‘%é’:_sl )

49. As an example of the application of §§ 45648, let us suppose a spherical shell or
solid sphere to be equilibrated under the influence of masses collected in two fixed
external points*, and each attracting according to the inverse square of its distance.
Let the two masses M, M be in the '
axis OX; and, P being the point whose
coordinates are z, 7, z, let PM=D,
PM'=D. Let alsoOM=¢, OM'=¢
Then, if m, m' denote the two masses, for equilibrium we must have

m__m'
e
# If our limits permitted, a highly interesting example might be made of the case of a shell under the
influence of a single attracting point in the hollow space within it. The effect will clearly be to keép- the
whole shell sensibly in equilibrium even if the attracting point is excentric; and under stress even if the
attracting point is in the centre.
MDCCCLXIIL 4~
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!
The potential at P, due to the two masses, will be %+%, or, according to the notation

of § 42, with, besides, w taken to denote the mass of unit volume of the elastic solid,

m'
—W=w ( p+ D'>
The known forms in the elementary theory-of spherical harmonics give immediately
the development of this in a converging infinite series of solid harmonic terms. We
have only then to apply the solution of §§ 45, 46 to each term, to obtain a series
expressing the required solution.

50. We may work out this result explicitly for the case in which both masses are
very distant; and for simplicity we shall suppose one of them infinitely more distant
than the other; that is to say, we shall suppose it to exercise merely a constant balancing
force on the substance of the shell. 'We shall then have precisely the same bodily dis-
turbing force as that which the earth experiences from the moon alone, or from the sun
alone.

51. Referring to the diagram and notation of § 49, we have

p=a{ L+ )
if we neglect higher powers of .- tha.n the square; and
1170
5= d( )
neglecting all higher powers of z i fc Hence, taking account of the relation %:;%’

required for equilibrium, we have, for the disturbance potential,
— W5~y =),

an irrelevant constant being omitted from the expression which § 49 would give. This
being a harmonic of the second degree, we may use it for W,,,, putting =1 in the
formule of § 47, and thus solve the problem of finding the deformation of a homo-
geneous spherical shell under the influence of a distant attracting mass and a uniform
balancing force. I hope, in a future communication to the Royal Society, to show the
application of this result to the case of the lunar and solar influence on a body such as
the earth is assumed to be by many geologists—that is to say, a solid crust, constituting
a spheroidal shell, of some thickness less than 100 miles, with its interior filled with
liquid. The untenability of this hypothesis is, however, sufficiently demonstrated by the
considerations adduced in a previous communication ( On the Rigidity of the Earth,”
read May 8, 1862), in which the following explicit solution of the problem for a homo-
geneous solid sphere only is used.
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62. Using the expression of § 61 for W,, we have

d;;r 2 5 2W,
dW;  m dW,
Gt Pt
(85)
d(Wyr—5) m (22— 3y —322) 2

p =+3; B

d(W =3 m (222 —Ly2—122 d(W -5 222 — Ly? zgz
(dz )= 3§( 27‘?{72)yw, (2 )_+3 ( 7?./7 —3%)

These formule being substituted for the differential coeﬂicients which appear in (84),
we have algebraic expressions for the displacement of any point of the solid.

The condition of the body being symmetrical about the axis of #, we may conveniently
assume

Y=Yy cos@, z=ysin @,
B+ =p*;
so that we shall have (as we see by the preceding expressions)
p=pcosg,
=wsing,

and p will denote the component displacement perpendicular to OX. If, further, we

ssume
& =1 cos 4,

y=rsind,

the expressions (84) for the component displacements, with (85) used in them, give

=wW— { 27'@24-3 ¢, (5 cos® §— 3)}cos0

(86)
y:w%{ re, (5 cos’ 0-—-1)}sm é. J

The values given in (84) for &, and &, are to be used for any internal point, at a distance
r from the centre, in these equations (86), and thus we have the simplest poss1ble ex-
pression for the required displacement of any point of the solid.

53. If we resolve the displacement along and perpendicular to the radius, and con-
sider only the radial component, we see that the series of concentric spherical surfaces
of the undisturbed globe become spheroids of revolution in the distorted body. The
elongation of the axial radius, obtained by putting =0 and taking the value of «, is
double the shortening of the equatorial radius, obtained by putting d=4# and taking
the value of w; which we might have inferred from the fact, shown by the general
equations (80) above, that there can be no alteration of volume on the whole within any
one of these surfaces. The expressmn for the excess of the axial above the equatorial
radius is —re, + 9 @2

4N2
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which, if we substitute for ¢, and &, their values by (84), becomes

3 _151_2(4m—-n)a9 (8m—mn)r?
10n(19m—>5n)

If in this we take r=¢, and m=co, it becomes z n; 13 7°, which is the result used in

§ 34 of the paper on the Rigidity of the Earth, preceding the present in the Transactions.
54. In the case of a'=0, the result of § 18 takes the extremely simple form

o=2{A(7) Faapa =T

{ <§) + 2a‘[n(22—a12)—-f-r2("" 1)] dfl);— } ,

y= { (%)+2a=[n(2z—a2)1r2(z—1)] d?; l}’r e

0,_,= d(g;r) Br) + ,r)
This expresses the displacement at any pomt within a solid sphere of radius @, when its
surface is displaced in a given manner (ZA;, 3B;, 2C). And merely by making ¢
negative we have, in the same formula, the solution of the same problem for an infinite
solid with a hollow spherical space every point of the surface of which is displaced to a
- given distance in a given direction. These solutions are obtained directly, with great
ease, by the method of §§ 6-15, or are easily proved by direct verification, without any
of the intricacy of analysis inevitable when, as in the general investigations with which
we commenced, a shell bounded by two concentric spherical surfaces is the subject.

where

[Added since the reading of the Paper.]

89 55 to 88. Oscillations of a Ligquid Sphere.

55. Let V be the gravitation potential at any point P(z, ¢, z), and 4 the height of the
surface (or radial component of its displacement) from the mean spherical surface at a
point E in the radius through P. Then, if

N N €45))

be the expression for % in terms of spherical surface harmonic functions of the position
of E, and if 4 be the attraction on the unit of mass exercised by a particle equal in mass
to the unit bulk of the liquid, we have, by the known methods for finding the attractions
of bodies infinitely nearly spherical (TromMsoN and Tarr’s ¢ Natural Philosophy,’ chap. vi.),

V= 4¢ap{la— -+2( )2z+1} when 7‘<cz£,1
V-_4wa;/,{———+ z( )inl} by T>aE . . . . . (89)

V= 47:'6&[1,{% a+2

and

2z‘+lj » =
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In these
dopa=3g, . . . . . . . . . o . (90)

if ¢ denote the force of gravity at the surface, due to the mean sphere, of radius a.
56. Now for infinitely small motions the ordinary kinetic equations give

dp__ (du dV dp__ (dv dV dp__ (dw dV
_EE‘“?(dt dx) "'d—g/"f(dt d/) "'(72'—?< dz) - (91)

where ¢ is the mass per unit of volume ; %, v, w the component velocities through the fixed
point P at time £; and p the fluid pressure. Hence, possible non-periodic motions being
omitted, udx~+vdy+wdz is a complete differential; and, denoting it by ¢, d we have

C—p= g(———V) (92

67. To find the surface conditions,—first, since the pressure has a constant value, I
at the free surface,

b

p=geh+II whenr=a, . . . . . . . . . (93)
the vauatlons of gravity depending on the variations of figure being of course neglected

in the infinitely small term geh. And, since % 1s the radial component of the velocity

at E, we have, when r=a,

x dp  y dp =z dp dh
rd.z'_l_rdy T odedt (94)

Now since, the fluid being incompressible, V'p=0, ¢ may be expanded in a series of
solid harmonic functions; let

(pzzq)i(%)i,. C e e e e e e (9B
where @, , @,, ... are surface harmonics. Hence, as the successive terms are homoge-
neous functions of the coordinates (2, g, 2), of degrees 1, 2, &c.,

z do Z;’j_l_i%ﬁ 2@() N 1))
and therefore, by (88) and (94), ‘

T (1)

58. Eliminating p between (92) with »=a and (93), substituting for V by (89) and

(90), differentiating, substituting for ‘% by (97), and comparing harmonic terms of

order ¢, we have

d2D; g . 3
# i (lmmm)®s - (99)
of which the integral is -

;=A cos | \/9< o) —Ef - - - o (99)

Here A is a surface spherical harmonic function of the coordinates of E expressing the
maximum value of ®;, and E is the epoch (TroMsox and Tarr, § 53) of the simple
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harmonic function of the time which we find to represent @;. Using this solution in
(97) and (88), we see that if the surface be normally displaced according to a spherical
harmonic of order ¢, and left to itself, the resulting motion gives rise to a simple
harmonic variation of the normal displacement, having for period

9 a 2141 ,
"V g %ii—1)

that is, the period of a common pendulum of length

(2i4+1)a
2i(i—1)
that the period of vibration thus calculated is the same for the same density of liquid,
whatever be the dimensions of the globe.

For the case of i=2, or an ellipsoidal deformation, the length of the isochronous
pendulum becomes $a, or one and a quarter times the earth’s radius, for a homogeneous
liquid globe of the same mass and diameter as the earth; and therefore for this case, or
for any homogeneous liquid globe of about 5% times the density of water, the half-period
is 47m 12¢, which is the result stated in the paper “ On the Rigidity of the Earth” (§ 8),
preceding the present in the Transactions.

It is worthy of remark

ArpunDIX, §§ 59-T1.—General Theory of the Equilibriwm of an Elastic Solid.

59. Let a solid composed of matter fulfilling no condition of isotropy in any part, and
not homogeneous from part to part, be given of any shape, unstrained, and let every
point of its surface be altered in position to a given distance in a given direction. It is
required to find the displacement of every point of its substance in equilibrium. Tet
#, 9, 2 be the coordinates of any particle, P, of the substance in its undisturbed position,
and #-a, y- 3, 2+ its coordinates when displaced in the manner specified ; that is to say,
let @, (3, ¥ be the components of the required displacement. Then, if for brevity we put

s 2 h
A=) + () +(2):
do\ 2 ap 2 dy\?
B=(7) +(5+1) +(2)
dB dry 2
o=(z) + (@) + @)
d"z g‘;z dzd g oL L L. (100)
_dada Y (Y
o=g i+ (1) 2+ (@),
de (o 8 dp
b_d (dx+1>+dz dx+< +1) ’
a8 /dB dy dy.
(dm+1>dy+dx(dy+1) +% dy’ J
these six quantities A, B, C, g, b, ¢, as is known ¥, thoroughly determine the strain expe-

rienced by the substance infinitely near the particle P (irrespectively of any rotation it
may experience), in the following manner :—

* Tromsox and Tarr’s ¢ Natural Philosophy,” § 190 (¢) and § 181 (5).
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60. Let &, 7, { be the undisturbed coordinates of a particle infinitely near P, rela-
"tively to axes through P parallel to those of @, y, z respectively; and let £, 5,, &, be
the coordinates, relative still to axes through P, when the solid is in its strained con-
dition. Then

§+n+0=AL+Br + O+ 20nl +- 2008 +2¢8; . . . . (101)
and therefore all particles which in the strained state lie on a spherical surface
&+ +i=ri,

are, in the unstrained state, on the ellipsoidal surface,

AZ+-Br+ CCH-2anl+ 2005+ 2ctn=r".
This, as is well known*, completely defines the homogeneous strain of the matter in
the neighbourhood of P.

61. Hence the thermo-dynamic principles by which, in a paper on the Thermo-
elastic Properties of Matter in the first Number of the ‘Quarterly Mathematical Journal’
(April 1855), GREEN’S dynamical theory of elastic solids was demonstrated as part of the
modern dynamical theory of heat, show that if w.dadydz denote the work required to
alter an infinitely small undisturbed volume, dadydz, of the solid, into its disturbed con-
dition, when its temperature is kept constant, we must have

w=f(A,B,C,a,0,¢), . . . . . . . . . . (102)
where f denotes a positive function of the six elements, which vanishes when A—1,
B—1, C—1, @,b, c each vanish. And if W denote the whole work required to produce
the change actually experienced by the whole solid, we have

W=({fwdadydz, . . . . . . . . . . . (108)

where the triple integral is extended through the space occupied by the undisturbed
.solid.
62. The position assumed by every particle in the interior of the solid will be such as
to make this a minimum, subject to the condition that every particle of the surface takes
‘the position given to it, this being the elementary condition of stable equilibrium.,
Hence, by the method of variation,
W=({Pwdzdyde=0. . . . . . . . . . (104)

But, exhibiting only terms depending on dw, we have

dw dwda  dw de)dda
3”’={ A dx+1> TH @ dy}T

dwde dwde dw/de dba
"‘{ BlyTaete dw+1)}

dw de  dwde dw/de dda
+{ dCdz+dady b\ & 1)}

+&e.
* Taomson and Tarr’s ¢ Natural Philosophy,” §§ 155-165.
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Hence, integrating by parts, and observing that da, 0B, dy vanish at the limiting surface,
‘we have

W= —({faodyts] (G+ G+ Tt L. 05)

“ dde  dde

where for brevity P, Q, R denote the factors of —— ? i respectively, in the pre-

ceding expression. In order that SW may vanish, the factors of dz, 03, dy in the expres-
sion now found for it must each vanish; and hence we have, as the equations of

equilibrium,
d dw dee | dw do A
{ A dz+1> +u =t dj}

dw de | dwde | dw /da
+dy{ “ByTaete dx+1>}
oo da | do da | dw (da N\
+a’z{ =T ddyTa dw+1> ;=0
&e. &ec., J

of which the second and third, not exhibited, may be written down merely by attending
to the symmetry.

63. From the property of w that it is necessarily positive when there is any strain, it
follows that there must be some distribution of strain through the interior which shall

(106)

make ({§wdadydz the least possible, subject to the prescribed surface condition, and there-
fore that the solution of equations (106), subject to this condition, is possible. If, what-
ever be the nature of the solid as to difference of elasticity in different directions, in any
part, and as to heterogencousness from part to part, and whatever be the extent of the
change of form and dimensions to which it is subjected, there cannot be any internal
configuration of unstable equilibrium, or consequently any but one of stable equilibrium,
with the prescribed surface displacement and no disturbing force on the interior, then,
besides being always positive, w must be such a function of A, B, &c. that there can be
only one solution of the equations. This is obviously the case when the unstrained solid
is homogeneous.

64. It is easy to include, in a general investigation similar to the preceding, the
effects of any force on the interior substance, such as we have considered particularly
for a spherical shell, of homogeneous isotropic matter, in §§ 35-46 above. It is also
easy to adapt the general investigation to superficial data of force, instead of displace-
ment.

65. Whatever be the general form of the function f for any part of the substance,
since it is always positive it cannot change in sign when A—1, B—1, C—1, a, &, ¢ have
their signs changed; and therefore for infinitely small values of these quantities it must
be a homogeneous quadratic function of them with constant coefficients. (And it may
be useful to observe that for all values of the variables A, B, &c., it must therefore be
expressible in the same form, with varying coefficients, each of which is always finite, for
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all values of the variables.) Thus, for infinitely small strains, we have GREEN’S theory
of elastic solids, founded on a homogeneous quadratic function of the components of
strain, expressing the work required to produce it. Putting

A—1=2¢, B—1=2f, C—1=2¢, . . . . . . . . (107)

and denoting by 3(e, ¢), (/. f), ... (¢, f), ... (& @), ... the coefficients, we have
w=3}{(e; )*+(f, LU*+(9 9)" +(a, a)a +(5, B)8* +(c; €)'} )
+(e, f)ef +(e, g)eg +(e, a)ea +(e, b)eb +(e, c)ec

+(f 99 +(fs alfat+(f OF +(f; Ofe

+(9, a)ga +(9: D)gb +(g, olge |
+(a, b)ab +(a, c)ac
+ (8, ¢)be
The twenty-one coefficients in this expression constitute the twenty-one coefficients of

elasticity, which GREEN first showed to be proper and essential for a complete theory of
the dynamics of an elastic solid subjected to infinitely small strains.

dw da dw de
dA dz’ @ dz
infinitely small, of the second order. 'We therefore omit them; and then, attending to
(107), we reduce (106) to

(108)

66. When the strains are infinitely small, the products - &ec. are each

d dw d dw d dw )

watgatea=0

d dw d dw d dw ' )
3—7 dy df""(‘z}"d‘—:o,L‘ . . . . . o« e (109)
d dw d dw d dw

Gt d TG

which are the equations of interior equilibrium. Attending to (108) we see that
dw  dw
e da
one of them as an example, we have

W (e, )et+(6,F )+ (e, 9)g+(e, at(e, B+ (e, o. . . . (110)

And «, B3, y denoting, as before, the component displacements of any interior particle, P,
from its undisturbed position (z y, z), we have, by (107) and (100),

- are linear functions of ¢, f; ¢, @, b, ¢ the components of strain. Writing out

d d
J=£’g=%’ (111)
a8 d vy da _de  dB
a._.._z-[-_l/, l’—“"-ﬁ’ o_dy—l- ;

Tt is to be observed that the coefficients (e, ¢) (¢, f ), &c. will be in general functions of
(@, 9, 2), but will be each constants when the unstrained solid is homogeneous.
MDCCCLXTIIL. 40
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67. It is now easy to prove directly, for the case of infinitely small strains, that the
solution of the equations of interior equilibrium, whether for a heterogeneous or a homo-
geneous solid, subject to the prescribed surface condition, is unique For let «, 3, ¥ be
components of displacement fulfilling the equations, and let &/, 3/, ¢ denote any other
functions of (a:, Y, 2) havmg the same surface values as «, 3, y, and let ¢, f',..., v
denote functions depending on them in the same way as ¢, f, ..., w depend on «, B, v
Thus, by TAYLOR’S theorem,

w_w_‘de(e—e)-l"df(f, .f)+dy(g’ !l)'l'da(“ a)+db(bl b)+%(0—0)+H

where H denotes the same homogeneous quadratic function of ¢'—e, &c. that w is of e,
&c. If for € —e, &c. we substitute their values by (111), this becomes

dw d( dw d(u a)

dw d( +d
C

a~a)
w—w'—de +

+&e. 4L

Multiplying by dadydz, integrating by parts, observing that o' —a, 3'—f3; o/ —y vanish
at the bounding surface, and taking account of (109), we find simply

' —w)dadyde=(\{ Hdzdydz. . . . . . . . (112)

But H is essentially positive. Therefore every other interior condition than that speci-
fied by («, 3, ¥), provided only it has the same bounding surface, requires a greater
amount of work than w to produce it: and the excess is equal to the work that would
be required to produce, from a state of no displacement, such a displacement as super-
imposed on (e, 8, ¥) would produce the other. And inasmuch as («, 3, y) fulfil only the
conditions of satisfying (110) and having the given surface values, it follows that no
other than one solution can fulfil these conditions.

68. But (as has been remarked by Professor STokES to the author) when the surface
data are of force, not of displacement, or when force acts from without, on the interior
substance of the body, the solution is not in general unique, and there may be con-
figurations of unstable equilibrium, even with infinitely small displacement. For in-
stance, let part of the body be composed of a steel bar magnet; and let a magnet be
held outside in the same line, and with a pole of the same name in its end nearest to
one end of theinner magnet. The equilibrium will be unstable, and there will be posi-
tions of stable equilibrium with the inner bar slightly inclined to the line of the outer
bar, unless the rigidity of the rest of the body exceed a certain limit.

69. Recurring to the general problem, in which the strains are not supposed infinitely
small, we see that, if the solid is isotropic in every part, the function of A, B, C, @, 4, ¢
which expresses w must be merely a function of the roots of the equation *

(A—)(B—E)C—E)—a"(A—5) =8 (B—E")—(C—5)+ 2abe=0, . (113)
which (that is the positive values of &) are the ratios of elongation along the principal
* TromsoN and Tarr’s ¢ Natural Philosophy,” § 181 (11).
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axes of the strain-ellipsoid. It is unnecessary here to enter on the analytical expression
of this condition. For the case of A—~1, B—1, C—1, @, b, ¢, each infinitely small, it
obviously requires that

(& )=(f, 1)=(9,9); (f,9)=(g9, e)=(e,.f); (2 a)=(5,8)=(c, 0); _
(es @)=, 0)=(3, ©)=0; (5, 0)=(¢, a)=(a, 1)=0; l . (1)
(¢, 8)=(e, )=(f, ©)=(/, &)=(9, 9)=(9, ) =0. )

Thus the twenty-one coefficients are reduced to three—

and

(e, €), which we may denote by the single letter Q,
(f; g )’ ) 9 ) 99 'Y 35,

((l, a)5 E}) tH) 9 9 n.

It is clear that this is necessary and sufficient for ensuring cubic isofropy—that is to say,
perfect equality of elastic properties with reference to the three rectangular directions
OX, OY, OZ. But for spherical isotropy, or complete isotropy with reference to all
directions through the substance, it is further necessary that

A—B=2m, . . . . . . . . . . (115)

as is easily proved analytically by turning two of the axes of coordinates in their own
plane through 45°; or geometrically by examining the nature of the strain represented
by any one of the elements a, b, ¢ (a “simple shear”) and comparing it with the resultant
of ¢, and f= —e¢ (which is also a simple shear). It is convenient now to put

A+B=2m; so that A=m+n, B=m—n; . . . . . . . (116)
and thus the expression for the potential energy per unit of volume becomes
2w:m(e+f+g)2+n(e”+f2+g”——2fg-2ge——26f+a”+b?+c2). ... (117

Using this in (108), and substituting for e, f, ¢, a, b, ¢ their values by (111), we find
immediately, for the equations of internal equilibrium, equations the same as (1) of
§ 2.

70. To find the mutual force exerted across any surface within the solid, as expressed
by (26) of § 22, we have clearly, by considering the works done respectively by P, Q,
R, S, T, U (§ 21) on any infinitely small change of figure or dimensiqns in the solid,

o o, gt g_dw qp_dv y_dv (118

P-——%*Q Q—-—d—f—-’ R——E‘;, S—da, T——db’ U——- dc ( )

Hence, for an isotropic solid, (117) gives the expression (25) of § 21, which we have
used above. -

71. To interpret the coefficients m and » in connexion with elementary ideas as to the
elasticity of the solid; first let a=b=¢=0, and ¢=f=g=49; in other words, let the
substance experience a uniform dilatation, in all directions, producing an expansion of
volume from 1 to 14+93. In this case (117) becomes

w=34(m—}n)¥;
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and we have
dw

Hence (m—4n)d is the normal force per unit area of its surface required to keep any
portion of the solid expanded to the amount specified by 8. Thus m—n measures the
elastic force called out by, or the elastic resistance against, change of volume: and
viewed as a cogfficient of elasticity, it may be called the elasticity of volume. What is

commonly called the ¢ compressibility” is measured by —
i

And let next e=f=g=>b=¢=0; which gives
w=4%nd*; and, by (118), S=na.
This shows that the tangential force per unit area required to produce an infinitely
small shear*, amounting to @, is ne. Hence n measures the innate power with which
the body resists change of shape, and returns to its original shape when force has been
applied to change it; that is to say, it measures the rigidity of the substance.

[ Nore added, December 1863].

Since this paper was communicated to the Royal Society, the author has found that
the solution of the most difficult of the problems dealt with in it, which is the determi-
nation of the effect produced on a spherical shell by a prescribed application of force to
its outer and inner surfaces, had previously been given by LAME in a paper published
in LiouviLLE’s Journal for 1854, under the title “ Mémoire sur I’Equilibre V’élasticité
des enveloppes sphériques.” In the same paper Laumi shows how to take into account
the effect of internal force, but does not solve the problem thus presented except for
the simple cases of uniform gravity and of centrifugal force. The form in which the
analysis has been applied in the present paper is very different from that chosen by
Laumg (who uses throughout polar coordinates); but the principles are essentially the
same, being merely those of spherical harmonic analysis, applied to problems presenting
peculiar and novel difficulties.

* Tromsoy and Tarr’s ¢ Natural Philosophy,” § 171.



